
www.manaraa.com
NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics	 369

FOCUS | COMMENTARY

easily give rise to the misguided idea that 
excellent software is free. The open-source 
software movement further reinforces 
the idea that all software should be free. 
There are excellent examples of open-
source software projects — such as those 
supported by the Linux, Apache and Eclipse 
foundations — and these are typically 
of high quality, fully documented and 
supported. Similarly, GitHub now has over 
three million users and supports over 16 
million repositories, most of which contain 
open-source code. However, much of open-
source scientific research software is often 
of poor quality, inefficient, undocumented 
and unmaintained. Producing high-quality 
software that is well documented, debugged 
and easy to install and use is expensive. 
Merely making scientific software open 
source is not a guarantee of quality.

Many developers of scientific software 
receive their training from other scientists 
rather than from a traditional computer-
science software-engineering course. There 
is still a mismatch between some standard 
software-engineering environments and 
methodologies and the practice of working 
computational scientists developing parallel 
codes for high-performance computing 
systems5. However, as can be seen from the 
example of the ATLAS LHC experiment, 
significant parts of the physics research 
community certainly use many of the 
modern tools of software engineers to 
develop and manage their large code base.

Part of the problem is that the long-
tail science researchers are often not well 
equipped to design, write, test, debug, 
install and maintain software — having only 
very basic training in programming. Enter 
‘software carpentry’. This movement was 

started by Greg Wilson in 1998 and has now 
evolved into a worldwide volunteer effort 
to raise standards in scientific computing. 
Wilson runs software-carpentry boot camps 
that focus on four aspects of computational 
competence6. A typical course introduces 
a handful of basic Unix shell commands, 
teaches students how to build simple 
Python programs step by step, emphasizes 
the benefits of version-control systems and 
extols the virtues of structured data. As 
Wilson notes, teaching such basic skills is 
not very interesting for computer scientists.

Support from above
A key problem in supporting research 
software development is that funding 
agencies in many countries do not view 
software development as an intellectual 
exercise worthy of a research grant. Instead, 
in their proposals, scientists have to focus on 
the research aspects of a particular scientific 
application and gloss over the fact that 
software will need to be developed to enable 
the science. However, both in the USA and 
the UK, the major research funding agencies 
have recently changed their policies on 
funding research software development.

The Advanced Cyberinfrastructure 
Division of the National Science Foundation 
(NSF) in the USA has produced a vision 
and strategy for supporting research 
software7. The plan is to address research 
software sustainability issues though a 
tiered approach. First, the NSF will form 
small groups to design software elements 
tailored for particular advances in science 
and engineering. Second, larger teams will 
be enlisted to build software infrastructure 
that is accessible to diverse scientific 
communities. The NSF intends to create 

hubs of excellence in software infrastructure 
and technologies. And finally, it plans to 
provide incentives for individuals and 
communities to build on existing software 
frameworks in their software development.

In the UK, the Research Councils have 
also recently changed their policy on 
software-development costs. In addition 
to providing support for the UK Software 
Sustainability Institute, the Engineering and 
Physical Sciences Research Council (EPSRC) 
now issues regular calls for proposals that 
are focused purely on either developing 
new and innovative software — adding 
novel functionality to existing software, 
or simply making widely used software 
packages more efficient and/or robust 
(http://go.nature.com/XFCWXy). The 
EPSRC also now offers personal fellowships 
specifically for individuals who specialize 
in software development. These are 
encouraging signs, but there is a long way 
to go before skilled developers of research 
software achieve parity of recognition with 
their partner research scientists.� ❐

Tony Hey is at the eScience Institute at the University 
of Washington, Seattle, Washington 98195, USA. 
Mike C. Payne is in the Cavendish Laboratory at the 
University of Cambridge, Cambridge CB3 0HE, UK. 
e-mail: tony.hey@live.com; mcp1@cam.ac.uk

References
1.	 Nowakowski, P. et al. Procedia Comput. Sci. 4, 608–617 (2011).
2.	 Koop, D. et al. Procedia Comput. Sci. 4, 648–657 (2011).
3.	 Bell, C. G. Comput. Sci. 1, 4–6 (1987).
4.	 Stodden, V. et al. Setting the Default to Reproducible: 

Reproducibility in Computational and Experimental Mathematics 
(ICERM, 2012); http://go.nature.com/nacwjm

5.	 Basili, V. R. et al. IEEE Software 25, 29–36 (2008); 
http://go.nature.com/xTSILw

6.	 Wilson, G. F1000Research 3, 62 (2014); http://go.nature.com/8V6ui9
7.	 A Vision and Strategy for Software for Science, Engineering and 

Education (NSF, 2012); http://go.nature.com/M29xjk

Programming revisited
Thomas C. Schulthess

Writing efficient scientific software that makes best use of the increasing complexity of computer 
architectures requires bringing together modelling, applied mathematics and computer engineering. 
Physics may help unite these approaches.

For half a century, the performance 
of computers has been improving 
exponentially. These impressive 

developments in scientific computing — 
which most scientists now take for 
granted — are documented by the Top500 
project (www.top500.org). Since 1993 
this website has been monitoring how the 
fastest computing systems solve dense 

linear equations with the high-performance 
LINPACK (HPL) benchmark and the 
sustained performance for HPL-type 
problems has been increasing roughly by 
three orders of magnitude per decade.

This improvement in performance is 
not limited to high-end supercomputers, 
but permeates all information technology 
infrastructures available to scientists today. 

For example, the current HPL performance of 
typical smartphones is comparable to that of 
Cray X-MP supercomputers in the late 1980s. 
Hard computational problems that originally 
required unique computing infrastructures 
become solvable within years on regular 
computers, and typically a decade or two later 
can be handled by commodity devices most 
people around the world carry in their pocket.

© 2015 Macmillan Publishers Limited. All rights reserved

http://go.nature.com/XFCWXy
mailto:tony.hey%40live.com?subject=
mailto:mcp1%40cam.ac.uk?subject=
http://go.nature.com/nacwjm
http://go.nature.com/xTSILw
http://go.nature.com/8V6ui9
http://go.nature.com/M29xjk
www.top500.org


www.manaraa.com
370	 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd p∇· v  + (cpd /cvd −1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)

= ∇ ·  (P l,f  +  F l,f) +  Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T ]−1

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T
·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved



www.manaraa.com
NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics	 371

FOCUS | COMMENTARY

and may want to specify many more 
details by using imperative programming 
languages such as FORTRAN or C/C++. 
This imperative approach can be productive 
and for many years FORTRAN has been 
the lingua franca in computational physics 
because it provided a good compromise 
between programmer productivity and 
performance. It has become embedded in 
a well-established workflow (Fig. 1). But a 
more subtle issue relates to the portability 
of codes.

The portability of imperative codes is not 
an issue as long as all computing platforms 
adhere to the same abstraction and suitable 
compilers are available to translate the user 
code into efficient machine code. This was 
certainly the case in the 1950s and 1960s, 
when imperative algorithm description 
languages were first developed and the 
von Neumann model still provided a good 
abstraction of all computer systems of 
the time. Even in the 1970s, when vector 
architectures became available, scientists 
could still create portable code without 
too much trouble. In theory, compilers 
would vectorize the code, but in practice 
the programmer had to pay attention 
to the layout of the data and choose the 
corresponding loop order to help the 
compilers discover sections of the code that 
could be vectorized. Nevertheless, as long as 
only one of the architectures deviates slightly 
from the canonical von Neumann model, 
both code portability and good performance 
can be achieved.

The break of traditional order
Things began to fall apart in the late 
1980s with the introduction of distributed 
memory systems, which later became known 
as massively parallel processor (MPP) 
arrays — computers with, by the late 1990s, 
thousands of processors. Scientists faced two 
challenges: parallelism and the distributed 
memory architecture.

Initially, parallelism was the biggest 
concern as there is a theoretical limit 
to its benefit to performance called 
Amdahl’s law — the speed-up of a parallel 
implementation cannot be better than 1/s, 
where s is the serials fraction of the work. 
However, this turned out to be a minor 
problem in many physics applications, in 
which sufficient parallelism can be identified 
and the serial fraction is small enough to 
allow scaling of computations to thousands 
or more processes. Certainly, parallel 
algorithms have to be developed, but this 
is not the most significant problem from a 
portability point of view.

The harder problem — which still eludes 
an elegant solution — turned out to be the 
memory architecture. Pragmatic scientists 

would use libraries to adapt a code to the 
memory architecture of an MPP system 
and portable libraries emerged in the 1990s. 
Currently the most popular is the Message 
Passing Interface (MPI)4 that initially 
implemented a two-sided model, where 
processes called MPI tasks would exchange 
information through messages with send 
and receive methods. Another notable effort 
was the Symmetric Hierarchical Memory 
(SHMEM) access library that implemented 
a one-sided communication model. 
SHMEM was industry-lead and is still in 
use today, despite the fact that it was not 
standardized in its early stages. The broader 
supercomputing community initiated MPI 
and released its first standard in 1994.

MPI is so dominant in parallel computing 
today that the science community often 
mistakes it for a parallel programming model. 
But MPI is a low-level library to handle data 
movements between distributed memory 
nodes and should rather be considered part 
of the runtime system of a programming 
environment. By using MPI in a program, the 
scientific programmers cross the line from 
specifying what needs to be computed to 
managing resources of the computing system. 
This can introduce portability problems if 
not done carefully. MPI is often thought to 
be difficult to use — which is clearly not 
the case — because scientists are not aware 
that they have crossed the line that formerly 
separated them from computer engineers.

Increasing diversity
MPP was just the first step towards more 
complex architectures that would no longer 

be hidden from the user. The next step 
concerned the memory wall, that is, the many 
orders of magnitude discrepancy between 
cycle time (on the order of nanoseconds) and 
memory access latency, which is measured in 
tens or hundreds of cycles. To hide memory 
latency as much as possible, processors now 
have a deep memory hierarchy (memory 
cashes) and sophisticated runtime systems 
are built to exploit temporal and spatial 
locality of the application codes. This is, in 
principle, transparent to the user. However, 
for all practical purposes, algorithms have 
to be specially designed and tuned with 
memory hierarchy and cash sizes in mind to 
maximize computational performance on a 
particular processor.

Just short of a decade ago, the number of 
processing cores in microprocessors began 
to increase exponentially as a consequence 
of the end of Dennard scaling, which has 
allowed transistors to shrink and improve 
performance while using less power. 
Furthermore, to accommodate higher 
transistor densities at constant energy 
density, the clock frequency has been 
steadily decreasing. Thus, individual cores in 
new processors are slower than in previous 
generations. All applications now have to 
exploit parallelism or lose performance on 
newer generation processors.

Multi-core processors are programmed 
with a shared-memory threading model, of 
which a number of portable ones exist today. 
The best known is OpenMP, but the new 
C++11 thread library is also rapidly gaining 
popularity. Besides supporting multiple 
threads, almost all microprocessors used 

Figure 2 | A new programming workflow. The workflow that takes into account the present reality with 
multiple, diverging computer architectures: models, their mathematical description, as well as algorithms 
are developed iteratively in a descriptive environment; algorithms and their imperative implementations 
are specialized for specific architectures. The green dotted line marks the separation between parts of the 
software stack developed specifically for scientific computing and the more generic parts used in other 
markets as well.

Science applications using a descriptive
and dynamic developer environment

Physical model

Mathematical description

Algorithmic description

Imperative code

Compiler front-end

Optimization / low-level libraries / runtime

Architecture specific back-ends

Architecture 1 Architecture 2 Architecture N

Multidisciplinary co-design
of tools, libraries,

programming environment

© 2015 Macmillan Publishers Limited. All rights reserved



www.manaraa.com
372	 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

in scientific computing today have vector 
registers. Like in the old days of vector 
machines, programmers have to rely on 
the compiler to vectorize codes, and try to 
help through proper choices of data layout 
and loop annotation, or processor specific 
vector instructions. Writing programs that 
vectorize well remains a difficult task and the 
resulting computer codes are not necessarily 
performance portable either. An interesting 
development that has recently gained 
significant popularity in physics is NVIDIA’s 
Compute Unified Device Architecture 
(CUDA), a parallel programming model 
based on C/C++ language and libraries to 
program graphics processing units (GPU). 
In the CUDA model, rather than relying on 
the compiler to detect vectorizable parts in 
otherwise serial code, programmers write 
code from the view of individual, fine-
grained threads. The serials code generated 
by the CUDA compiler is bundled by the 
hardware into small groups of threads 
executing in lockstep — with a single 
instruction, hence the term single instruction 
multiple threads (SIMT) — and control flow 
divergence is managed transparently to the 
programmer. This bypasses the vectorization 
challenge, and in practice, algorithms that 
have been redesigned for the CUDA model 
perform much better on vector processors as 
well. As open source compiler projects such 
as GCC and LLVM begin to support SIMT 
programming, it will be interesting to see 
whether a new programming environment 
can emerge that also provides better 
portability to vector processors.

Today’s supercomputers, and thus 
most of the future scientific computing 
systems at all levels, are combinations of 
distributed memory clusters with massively 
multithreaded nodes that have complex and 
heterogeneous memory architectures. Thus, 
whether the node-level threading model 
X is OpenMP, C++11 threads, CUDA or 
something else, the pragmatic programmer 
will resort to MPI+X on an MPP system. 
But, this is still an uneven mixture of a 
proper programming model X and the 
low-level library MPI. A large number of 
projects have encountered this problem, and 
partitioned global address space (PGAS) 
languages like X10, Chapel, and UPC have 
been designed to support distributed multi-
dimensional arrays, for instance. These new 
languages have not had much traction and 
have not yet been adopted by larger software 
development projects. However, many large 
software projects and experienced developers 
that rely on MPI as a low-level library will 
develop a front end for their particular 
domain. Over time these solutions develop 
into domain specific libraries or languages 
(DSLs) that may even exchange MPI with 

some other low-level library. The DSLs 
provide a much higher-level interface, where 
their maintainers, along with vendors, assure 
performance portability across platforms. 
An early example of domain specific library 
development is the NWChem quantum 
chemistry code5 that motivated the Global 
Arrays library6, which is now a commonly 
used PGAS solution for distributed arrays.

Where to go from here
With technology reaching the end of 
Moore’s law scaling around the conclusion 
of the decade, architectural diversity and 
complexity will likely continue to increase. 
On-node parallelism will grow for a few 
more processor generations and may reach 
around 105 or more threads per node. More 
importantly, there will be even greater 
heterogeneity in memory than today, and 
the need to focus on data locality, as well as 
minimize data movement in algorithms, will 
persist. This is a profound change compared 
with computing in the von Neumann 
paradigm, where the programmer simply had 
to acknowledge that memory exists because 
the problem had to fit to the available 
resources. Today and increasingly so in the 
future, programmers will have to design 
algorithms that properly map data on the 
distributed memory, avoid communication 
as much as possible, and make optimal use 
of the memory hierarchy. The mathematical 
formalism to express locality in algorithms 
still needs to be developed though, as present 
methods to analyse complexity focus only on 
computational costs.

With these developments the canonical 
workflow shown in Fig. 1 would be 
unsustainable even for the traditional use 
of scientific computing, where simulations 
dominate, resulting in fewer programmers 
being able to take advantage of new 
computing technology. Several well-
established simulation domains deal with 
complex, continually evolving models 
(like climate and earth sciences) or require 
rapid prototyping of new algorithms to 
manage computational complexity (like 
quantum chemistry or condensed matter 
physics). Thus, it seems more practical to 
look at a new workflow, from the point of 
view of the exploratory use of computing 
systems. This is depicted in Fig. 2, where we 
acknowledge that in science, the models, 
their mathematical analysis and algorithmic 
implementation evolve iteratively. 
Algorithms still have to be implemented with 
imperative code and compiled on a specific 
machine, but the choice of algorithms and 
their implementation will depend on the 
architecture used. If this consequence of 
diverging architectures is accepted, one ends 
up with a different separation of work.

The separation between descriptive 
and imperative programming models 
is both natural and important. Most 
exploratory use of computing systems 
should be able to rely entirely on descriptive 
developer environments like IPython7. 
These environments can be engineered as 
efficient, high-performance computing 
tools, provided that common algorithmic 
motifs are well implemented and available. 
The guiding example for Python should 
be numpy, a library that implements 
multi-dimensional arrays: a dense matrix 
multiplication implemented in Python will 
perform poorly, but with numpy arrays 
and appropriate back-end methods the 
matrix multiplication can be as fast as the 
best blocking implementation available that 
makes modern supercomputers perform 
well with respect to the HPL benchmark.

This should be repeated for other 
common algorithmic motifs, most of 
which are already quite well understood 
in terms of existing DSL implementations. 
Similar to linear algebra implementations 
that at some point were unified into what 
we now know as the basic linear algebra 
subroutines (BLAS) and LAPACK8 — which 
one could consider to be the first successful 
DSL — systems should be implemented and 
designed for other motifs. Eventually DSLs 
other than BLAS will begin to dominate. 
They will provide new benchmarks that, 
like HPL today, will drive the development 
of efficient computing systems for the areas 
that have been falling behind.

A second line probably needs to be 
drawn between the part of the system 
that is designed specifically for scientific 
computing and some of its parts, such 
as processors, memory, and, in the near 
future, even networking components that 
are designed and produced primarily for 
high-volume markets, bearing much of the 
development costs. Relying on such high-
volume parts can cut costs and leave more 
resources to be invested in the packaging of 
scientific computing systems, including the 
development of software tools.

Such a reorganization of the concerns 
in how computing systems are developed 
and built would raise scientific productivity 
because of both higher performance 
and more efficient programmability in a 
descriptive sense. However, it will require 
the various subdomains of the scientific 
computing community, the domain sciences, 
applied mathematics, and computer 
science, to grow together in a much more 
multidisciplinary way. Scientists will have 
to give up on the idea that legacy codes 
must run forever. Computer scientists and 
engineers will have to make some low-level 
libraries and parts of the runtime systems 

© 2015 Macmillan Publishers Limited. All rights reserved



www.manaraa.com
NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics	 373

FOCUS | COMMENTARY

more accessible, just as they did with 
MPI. And mathematicians should provide 
accessible descriptions for data centric 
analysis, which is not a trivial task. Perhaps 
physicists can take the lead in gluing these 
pieces together, as they did for the MANIAC 
computer in the 1950s.� ❐

Thomas C. Schulthess is at Institut fur Theoretische 
Physik, ETH Zurich, Zurich 8093, Switzerland. 
He also directs the Swiss National Supercomputing 
Centre in Switzerland and holds a visiting 

Look to the clouds and beyond
Sergey Panitkin

Research in high-energy physics produces masses of data, demanding extensive computational 
resources. The scientists responsible for managing these resources are now turning to cloud and 
high-performance computing.

The ATLAS experiment1 at the Large 
Hadron Collider (LHC) is designed 
to explore fundamental properties of 

matter at the highest energy ever achieved 
in a laboratory. Since the LHC became 
operational six years ago, the experiment 
has produced and distributed more than 
150 petabytes of data worldwide. Thousands 
of ATLAS physicists are engaged in daily 
analysis of this data, and their work has 
led to the publication of more than 400 
papers on various aspects of LHC physics. 
So how does one go about managing the 
computational resources required for such a 
formidable programme of research?

Modern research in high-energy physics 
is practically impossible without massive 
computing infrastructure. ATLAS currently 
uses more than 100,000 CPU cores arranged 
in a grid spanning well over 100 computing 
centres. But the next LHC run, which started 
this month, will require more resources than 
this grid can possibly provide to sustain 
the pace of the proposed research. The 
grid infrastructure will be sufficient for the 
planned analysis and data processing, but 
it will fall short of the requirements for the 
large-scale Monte Carlo simulations that 
accompany the experiments — as well as 
any extra activities. Additional computing 
and storage resources are therefore 
required. To meet these challenges, ATLAS 
is engaged in an ambitious programme to 
expand the current computing model to 
incorporate additional resources, including 
supercomputers and high-performance 
computing clusters as well as commercial 
and academic clouds.

distinguished scientist appointment at Oak Ridge 
National Laboratory in the USA. 
e-mail: schultho@ethz.ch

References
1.	 Lynch, P. The Emergence of Numerical Weather Prediction: 

Richardson’s Dream (Cambridge Univ. Press, 2006).
2.	 Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Phys. Rev. Lett.  

71, 2401–2404 (1993).
3.	 Hey, T., Tansley, S. & Tolle, K. (eds) The Fourth Paradigm: 

Data-Intensive Scientific Discovery (Microsoft Research, 2009).
4.	 Message Passing Interface Forum. MPI: A Message-Passing 

Interface standard. Int. J. Supercomput. Appl. High Perfor. Comput. 
8, 165–416 (1994).

5.	 Valiev, M. et al., Comput. Phys. Commun. 181, 1477–1489 (2010).

6.	 Nieplocha, J. & Harrison, R. J. Supercomput.  
11, 119–136 (1997).

7.	 Pérez, F. & Granger, B. E. Comput. Sci. Eng. 9, 21–29 (2007).
8.	 Anderson, E. et al. LAPACK Users’ Guide (Software, Environments 

and Tools) (SIAM, 1987).
9.	 Kutzbach, J. E. & Ruddiman, W. F. Sci. Am. 264, 66–75 (1991).

Acknowledgements
The author thanks Thomas Lippert for insightful discussion 
on the respective roles of simulations and data analysis, as 
well as Peter Messmer, Oliver Fuhrer and Torsten Hoefler 
for important comments on parts of the manuscript. 
Generous support from the NCCR-MARVEL project of the 
Swiss National Fund and Oak Ridge National Laboratory 
is acknowledged.

Grids and clouds
The ATLAS computing model2 is based 
on a grid paradigm3, with multilevel, 
hierarchically distributed computing 
and storage resources. The grid model 
was conceived in the late 1990s and has 
served ATLAS and the entire LHC physics 
community well. However, new cloud 
computing technologies offer attractive 
features that can help to improve the 
operation and elasticity of scientific 
distributed computing.

ATLAS now treats grid and cloud 
computing as complementary technologies 
that can coexist at different levels of 
resource abstraction. The flexibility of the 
cloud technology allows the representation 
of distributed resources in a variety of 
ways — ranging from small stand-alone 
private or public clouds to a large-scale 
heterogeneous federation of clouds located 
on several continents.

Cloud resources, especially those sold 
commercially by the likes of Amazon and 
Google, can temporarily augment grid 
resources at times of escalating demand 
for computing power. Such spikes in 
demand exceed the level of available 
ATLAS computing resources by an order 
of magnitude at times, and are expected to 
grow in amplitude and frequency during 
the next LHC run. Some of the existing 
cloud technologies, like OpenStack 
(http://www.openstack.org) for example, can 
be used as a new way to manage computing 
resources at different ATLAS grid sites, thus 
helping to improve operational efficiency 
and resource utilization flexibility.

A cloud computing system offers 
virtualization, which shields applications 
from disruptive changes in hardware 
and system software. It also reduces the 
need for resource-provider personnel to 
have an intimate knowledge of the user’s 
application — meaning that resource centres 
need not have in-house expertise in grid 
computing or ATLAS software to contribute 
to ATLAS distributed computing. Cloud 
technologies can also provide a convenient 
way of dynamically managing resource 
allocation between multiple projects 
within a single centre. And they can help 
to aggregate heterogeneously distributed 
resources into a unified framework.

To manage the grid, ATLAS makes use 
of a workload management system designed 
specifically for distributed data processing 
and analysis. Typically though, a cloud system 
requires an additional management layer. 
This layer may be independent of the way 
that the computing workload is managed, or 
it can interface with the management system 
directly to control the number of virtual 
machines running. To implement this layer, 
ATLAS explored several options — and even 
went as far as creating an R&D group in 2011 
to investigate cloud computing technologies 
and their utility for the experiment. Since 
then, the cloud R&D project has been 
transformed into the cloud operations project, 
which uses a variety of virtualized resources 
and cloud platforms that are integrated with 
the distributed computing system.

One of the longest running cloud 
resources in the ATLAS experiment is a 
heterogeneous cloud computing system that 

© 2015 Macmillan Publishers Limited. All rights reserved

mailto:schultho%40ethz.ch?subject=
mailto:http://www.openstack.org?subject=


www.manaraa.com

Copyright of Nature Physics is the property of Nature Publishing Group and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


	Programming revisited
	Predictions and data analysis
	Figure 1 | Traditional computational science workflow.
	Scientists and computer engineers
	Figure 2 | A new programming workflow.
	The break of traditional order
	Increasing diversity
	Where to go from here
	References
	Acknowledgements

